The processing and fabrication of plastics

March 9, 2022
plastics-4.png

Here is what you need to know about the processing and fabrication of plastics.

According to Britannica:

The processing of raw materials into usable forms is termed fabrication or conversion. An example from the plastics industry would be the conversion of plastic pellets into films or the conversion of films into food containers. In this section the mixing, forming, finishing, and fibre reinforcing of plastics are described in turn.

Compounding

The first step in most plastic fabrication procedures is compounding, the mixing together of various raw materials in proportions according to a specific recipe. Most often the plastic resins are supplied to the fabricator as cylindrical pellets (several millimetres in diameter and length) or as flakes and powders. Other forms include viscous liquids, solutions, and suspensions.

Mixing liquids with other ingredients may be done in conventional stirred tanks, but certain operations demand special machinery. Dry blending refers to the mixing of dry ingredients prior to further use, as in mixtures of pigments, stabilizers, or reinforcements. However, polyvinyl chloride (PVC) as a porous powder can be combined with a liquid plasticizer in an agitated trough called a ribbon blender or in a tumbling container. This process also is called dry blending, because the liquid penetrates the pores of the resin, and the final mixture, containing as much as 50 percent plasticizer, is still a free-flowing powder that appears to be dry.

The workhorse mixer of the plastics and rubber industries is the internal mixer, in which heat and pressure are applied simultaneously. The Banbury mixer resembles a robust dough mixer in that two interrupted spiral rotors move in opposite directions at 30 to 40 rotations per minute. The shearing action is intense, and the power input can be as high as 1,200 kilowatts for a 250-kg (550-pound) batch of molten resin with finely divided pigment.

In some cases, mixing may be integrated with the extrusion or molding step, as in twin-screw extruders.

Forming

The process of forming plastics into various shapes typically involves the steps of melting, shaping, and solidifying. As an example, polyethylene pellets can be heated above Tm, placed in a mold under pressure, and cooled to below Tm in order to make the final product dimensionally stable. Thermoplastics in general are solidified by cooling below Tg or Tm. Thermosets are solidified by heating in order to carry out the chemical reactions necessary for network formation.

Extrusion

In extrusion, a melted polymer is forced through an orifice with a particular cross section (the die), and a continuous shape is formed with a constant cross section similar to that of the orifice. Although thermosets can be extruded and cross-linked by heating the extrudate, thermoplastics that are extruded and solidified by cooling are much more common. Among the products that can be produced by extrusion are film, sheet, tubing, pipes, insulation, and home siding. In each case the profile is determined by the die geometry, and solidification is by cooling.

Most plastic grocery bags and similar items are made by the continuous extrusion of tubing. In blow extrusion, the tube is expanded before being cooled by being made to flow around a massive air bubble. Air is prevented from escaping from the bubble by collapsing the film on the other side of the bubble. For some applications, laminated structures may be made by extruding more than one material at the same time through the same die or through multiple dies. Multilayer films are useful since the outer layers may contribute strength and moisture resistance while an inner layer may control oxygen permeability—an important factor in food packaging. The layered films may be formed through blow extrusion, or extrudates from three machines may be pressed together in a die block to form a three-layer flat sheet that is subsequently cooled by contact with a chilled roll.

The flow through a die in extrusion always results in some orientation of the polymer molecules. Orientation may be increased by drawing—that is, pulling on the extrudate in the direction of polymer flow or in some other direction either before or after partial solidification. In the blow extrusion process, polymer molecules are oriented around the circumference of the bag as well as along its length, resulting in a biaxially oriented structure that often has superior mechanical properties over the unoriented material.

Compression molding

In the simplest form of compression molding, a molding powder (or pellets, which are also sometimes called molding powder) is heated and at the same time compressed into a specific shape. In the case of a thermoset, the melting must be rapid, since a network starts to form immediately, and it is essential for the melt to fill the mold completely before solidification progresses to the point where flow stops. The highly cross-linked molded article can be removed without cooling the mold. Adding the next charge to the mold is facilitated by compressing the exact required amount of cold molding powder into a preformed “biscuit.” Also, the biscuit can be preheated by microwave energy to near the reaction temperature before it is placed in the mold cavity. A typical heater, superficially resembling a microwave oven, may apply as much as 10 kilovolts at a frequency of one megahertz. Commercial molding machines use high pressures and temperatures to shorten the cycle time for each molding. The molded article is pushed out of the cavity by the action of ejector pins, which operate automatically when the mold is opened.

In some cases, pushing the resin into the mold before it has liquefied may cause undue stresses on other parts. For example, metal inserts to be molded into a plastic electrical connector may be bent out of position. This problem is solved by transfer molding, in which the resin is liquefied in one chamber and then transferred to the mold cavity.

In one form of compression molding, a layer of reinforcing material may be laid down before the resin is introduced. The heat and pressure not only form the mass into the desired shape but also combine the reinforcement and resin into an intimately bound form. When flat plates are used as the mold, sheets of various materials can be molded together to form a laminated sheet. Ordinary plywood is an example of a thermoset-bound laminate. In plywood, layers of wood are both adhered to one another and impregnated by a thermoset such as urea-formaldehyde, which forms a network on heating.

Injection molding

It is usually slow and inefficient to mold thermoplastics using the compression molding techniques described above. In particular, it is necessary to cool a thermoplastic part before removing it from the mold, and this requires that the mass of metal making up the mold also be cooled and then reheated for each part. Injection molding is a method of overcoming this inefficiency. Injection molding resembles transfer molding in that the liquefying of the resin and the regulating of its flow is carried out in a part of the apparatus that remains hot, while the shaping and cooling is carried out in a part that remains cool. In a reciprocating screw injection molding machine, material flows under gravity from the hopper onto a turning screw. The mechanical energy supplied by the screw, together with auxiliary heaters, converts the resin into a molten state. At the same time the screw retracts toward the hopper end. When a sufficient amount of resin is melted, the screw moves forward, acting as a ram and forcing the polymer melt through a gate into the cooled mold. Once the plastic has solidified in the mold, the mold is unclamped and opened, and the part is pushed from the mold by automatic ejector pins. The mold is then closed and clamped, and the screw turns and retracts again to repeat the cycle of liquefying a new increment of resin. For small parts, cycles can be as rapid as several injections per minute.

Reaction injection molding

One type of network-forming thermoset, polyurethane, is molded into parts such as automobile bumpers and inside panels through a process known as reaction injection molding, or RIM. The two liquid precursors of a polyurethane are a multifunctional isocyanate and a prepolymer, a low-molecular-weight polyether or polyester bearing a multiplicity of reactive end-groups such as hydroxyl, amine, or amide. In the presence of a catalyst such as a tin soap, the two reactants rapidly form a network joined mainly by urethane groups. The reaction takes place so rapidly that the two precursors have to be combined in a special mixing head and immediately introduced into the mold. However, once in the mold, the product requires very little pressure to fill and conform to the mold—especially since a small amount of gas is evolved in the injection process, expanding the polymer volume and reducing resistance to flow. The low molding pressures allow relatively lightweight and inexpensive molds to be used, even when large items such as bumper assemblies or refrigerator doors are formed.

Blow molding

The popularity of thermoplastic containers for products previously marketed in glass is due in no small part to the development of blow molding. In this technique, a thermoplastic hollow tube, the parison, is formed by injection molding or extrusion. In heated form, the tube is sealed at one end and then blown up like a balloon. The expansion is carried out in a split mold with a cold surface; as the thermoplastic encounters the surface, it cools and becomes dimensionally stable. The parison itself can be programmed as it is formed with varying wall thickness along its length, so that, when it is expanded in the mold, the final wall thickness will be controlled at corners and other critical locations. In the process of expansion both in diameter and length (stretch blow molding), the polymer is biaxially oriented, resulting in enhanced strength and, in the case of polyethylene terephthalate (PET) particularly, enhanced crystallinity.

Blow molding has been employed to produce bottles of polyethylene, polypropylene, polystyrene, polycarbonate, PVC, and PET for domestic consumer products. It also has been used to produce fuel tanks for automobiles. In the case of a high-density-polyethylene tank, the blown article may be further treated with sulfur trioxide in order to improve the resistance to swelling or permeation by gasoline.

Casting and dipping

Not every forming process requires high pressures. If the material to be molded is already a stable liquid, simply pouring (casting) the liquid into a mold may suffice. Since the mold need not be massive, even the cyclical heating and cooling for a thermoplastic is efficiently done.

One example of a cast thermoplastic is a suspension of finely divided, low-porosity PVC particles in a plasticizer such as dioctyl phthalate (DOP). This suspension forms a free-flowing liquid (a plastisol) that is stable for months. However, if the suspension (for instance, 60 parts PVC and 40 parts plasticizer) is heated to 180 °C (356 °F) for five minutes, the PVC and plasticizer will form a homogeneous gel that will not separate into its components when cooled back to room temperature. A very realistic insect or fishing worm can be cast from a plastisol using inexpensive molds and a cycle requiring only minutes. In addition, when a mold in the shape of a hand is dipped into a plastisol and then removed, subsequent heating will produce a glove that can be stripped from the mold after cooling.

Thermoset materials can also be cast. For example, a mixture of polymer and multifunctional monomers with initiators can be poured into a heated mold. When polymerization is complete, the article can be removed from the mold. A transparent lens can be formed in this way using a diallyl diglycol carbonate monomer and a free-radical initiator.

Rotational molding

In order to make a hollow article, a split mold can be partially filled with a plastisol or a finely divided polymer powder. Rotation of the mold while heating converts the liquid or fuses the powder into a continuous film on the interior surface of the mold. When the mold is cooled and opened, the hollow part can be removed. Among the articles produced in this manner are many toys such as balls and dolls.

Thermoforming and cold molding

When a sheet of thermoplastic is heated above its Tg or Tm, it may be capable of forming a free, flexible membrane as long as the molecular weight is high enough to support the stretching. In this heated state, the sheet can be pulled by vacuum into contact with the cold surface of a mold, where it cools to below Tg or Tm and becomes dimensionally stable in the shape of the mold. Cups for cold drinks are formed in this way from polystyrene or PET.

Vacuum forming is only one variation of sheet thermoforming. The blow molding of bottles described above differs from thermoforming only in that a tube rather than a sheet is the starting form.

Even without heating, some thermoplastics can be formed into new shapes by the application of sufficient pressure. This technique, called cold molding, has been used to make margarine cups and other refrigerated food containers from sheets of acrylonitrile-butadiene-styrene copolymer.

Foaming

Foams, also called expanded plastics, possess inherent features that make them suitable for certain applications. For instance, the thermal conductivity of a foam is lower than that of the solid polymer. Also, a foamed polymer is more rigid than the solid polymer for any given weight of the material. Finally, compressive stresses usually cause foams to collapse while absorbing much energy, an obvious advantage in protective packaging. Properties such as these can be tailored to fit various applications by the choice of polymer and by the manner of foam formation or fabrication. The largest markets for foamed plastics are in home insulation (polystyrene, polyurethane, phenol formaldehyde) and in packaging, including various disposable food and drink containers.

Foamed thermoplastics

Polystyrene pellets can be impregnated with isopentane at room temperature and modest pressure. When the pellets are heated, they can be made to fuse together at the same time that the isopentane evaporates, foaming the polystyrene and cooling the assembly at the same time. Usually the pellets are prefoamed to some extent before being put into a mold to form a cup or some form of rigid packaging. The isopentane-impregnated pellets may also be heated under pressure and extruded, in which case a continuous sheet of foamed polystyrene is obtained that can be shaped into packaging, dishes, or egg cartons while it is still warm.

Structural foams can also be produced by injecting nitrogen or some other gas into a molten thermoplastic such as polystyrene or polypropylene under pressure in an extruder. Foams produced in this manner are more dense than the ones described above, but they have excellent strength and rigidity, making them suitable for furniture and other architectural uses.

One way of making foams of a variety of thermoplastics is to incorporate a material that will decompose to generate a gas when heated. To be an effective blowing agent, the material should decompose at about the molding temperature of the plastic, decompose over a narrow temperature range, evolve a large volume of gas, and, of course, be safe to use. One commercial agent is azodicarbonamide, usually compounded with some other ingredients in order to modify the decomposition temperature and to aid in dispersion of the agent in the resin. One mole (116 grams) of azodicarbonamide generates about 39,000 cubic cm of nitrogen and other gases at 200 °C. Thus, 1 gram added to 100 grams of polyethylene can result in foam with a volume of more than 800 cubic cm. Polymers that can be foamed with blowing agents include polyethylene, polypropylene, polystyrene, polyamides, and plasticized PVC.

Foamed thermosets

The rapid reaction of isocyanates with hydroxyl-bearing prepolymers to make polyurethanes is mentioned above in Reaction injection molding. These materials also can be foamed by incorporating a volatile liquid, which evaporates under the heat of reaction and foams the reactive mixture to a high degree. The rigidity of the network depends on the components chosen, especially the prepolymer.

Hydroxyl-terminated polyethers are often used to prepare flexible foams, which are used in furniture cushioning. Hydroxyl-terminated polyesters, on the other hand, are popular for making rigid foams such as those used in custom packaging of appliances. The good adhesion of polyurethanes to metallic surfaces has brought about some novel uses, such as filling and making rigid certain aircraft components (rudders and elevators, for example).

Another rigid thermoset that can be foamed in place is based on phenol-formaldehyde resins. The final stage of network formation is brought about by addition of an acid catalyst in the presence of a volatile liquid.

Finishing

Joining

Some plastics can be joined by welding, in the same manner as metals—PVC and polyethylene tanks and ductwork being prime examples. More commonly, surfaces are joined by being brought into contact with one another and heated by conduction or by dielectric heating. Heat sealing of bags made from tubes of blow-extruded polyolefins such as polyethylene and polypropylene usually requires contact with a hot sealing bar. PVC has a high enough dielectric loss that heat can be generated throughout the material by exposure to a high-frequency, high-voltage electric field.

Machining

Rigid thermoplastics and thermosets can be machined by conventional processes such as drilling, sawing, turning on a lathe, sanding, and other operations. Glass-reinforced thermosets are machined into gears, pulleys, and other shapes, especially when the number of parts does not justify construction of a metal mold. Various forms can be stamped out (die-cut) from sheets of thermoplastics and thermosets. The cups made by vacuum forming, for instance, are cut out of the mother sheet using a sharp die. In the case of a thermoplastic such as polystyrene, the scrap sheet left over can be reground and remolded.

Coating

Although colour may be added in the form of a pigment or dye throughout a plastic article, there are many applications where a surface coating is valuable for protective or decorative purposes. The automobile bumpers produced by reaction injection molding can be painted to match the rest of the body. It is important in applying coatings to plastics that the solvent used does not cause swelling of the underlying substrate. For this reason, latex dispersion paints have found favour, although surface treatment is necessary to provide good bonding with these materials.

Fibre reinforcement

The term polymer-matrix composite is applied to a number of plastic-based materials in which several phases are present. It is often used to describe systems in which a continuous phase (the matrix) is polymeric and another phase (the reinforcement) has at least one long dimension. The major classes of composites include those made up of discrete layers (sandwich laminates) and those reinforced by fibrous mats, woven cloth, or long, continuous filaments of glass or other materials.

Sandwich laminates

Plywood is a form of sandwich construction of natural wood fibres with plastics. The layers are easily distinguished and are both held together and impregnated with a thermosetting resin, usually urea formaldehyde. A decorative laminate can consist of a half-dozen layers of fibrous kraft paper (similar to paper used for grocery bags) together with a surface layer of paper with a printed design—the entire assembly being impregnated with a melamine-formaldehyde resin. For both plywood and the paper laminate, the cross-linking reaction is carried out with sheets of the material pressed and heated in large laminating presses.

Fibreglass

Fibrous reinforcement in popular usage is almost synonymous with fibreglass, although other fibrous materials (carbon, boron, metals, aramid polymers) are also used. Glass fibre is supplied as mats of randomly oriented microfibrils, as woven cloth, and as continuous or discontinuous filaments.

Hand lay-up is a versatile method employed in the construction of large structures such as tanks, pools, and boat hulls. In hand lay-up mats of glass fibres are arranged over a mold and sprayed with a matrix-forming resin, such as a solution of unsaturated polyester (60 parts) in styrene monomer (40 parts) together with free-radical polymerization initiators. The mat can be supplied already impregnated with resin. Polymerization and network formation may require heating, although free-radical “redox” systems can initiate polymerization at room temperature. The molding may be compacted by covering the mold with a blanket and applying a vacuum between the blanket and the surface or, when the volume of production justifies it, by use of a matching metal mold.

Continuous multifilament yarns consist of strands with several hundred filaments, each of which is 5 to 20 micrometres in diameter. These are incorporated into a plastic matrix through a process known as filament winding, in which resin-impregnated strands are wound around a form called a mandrel and then coated with the matrix resin. When the matrix resin is converted into a network, the strength in the hoop direction is very great (being essentially that of the glass fibres). Epoxies are most often used as matrix resins, because of their good adhesion to glass fibres, although water resistance may not be as good as with the unsaturated polyesters.

A method for producing profiles (cross-sectional shapes) with continuous fibre reinforcement is pultrusion. As the name suggests, pultrusion resembles extrusion, except that the impregnated fibres are pulled through a die that defines the profile while being heated to form a dimensionally stable network.

Original Source

Michigan

Headquarters


800-544-2220

www.paulmurphyplastics.com

[email protected]

15301 11 Mile Road, Roseville, MI 48066

Get In Touch

Follow Our Activity



ISO 9001 Certification

Quality Assurance